

Contents

reface to the Seventh Edition (SIE)	XI
reface	xv
1. Digital Principles	1
1.1 Definitions for Digital Signals 2	
1.2 Digital Waveforms 4	
1.3 Digital Logic 8	
1.4 Moving and Storing Digital Information 13	
1.5 Digital Operations 17	
1.6 Digital Computers 22	
1.7 Digital Integrated Circuits 26	
1.8 Digital IC Signal Levels 32	
Summary 35	
Glossary 35	
Problems 36	
2. Digital Logic	40
2.1 The Basic Gates—NOT, OR, AND 40	
2.2 Universal Logic Gates—NOR, NAND 48	
2.3 AND-OR-Invert Gates 57	
2.4 Positive and Negative Logic 59	
2.5 Introduction to HDL 61	
Summary 68	
Glossary 69	
Problems 69	
Laboratory Experiment 73	
3 Combinational Logic Circuits	74
3.1 Boolean Laws and Theorems 75	
3.2 Sum-of-Products Method 81	
3.3 Truth Table to Karnaugh Map 84	
3.4 Pairs, Quads, and Octets 86	
3.5 Karnaugh Simplifications 89	
3.6 Don't-care Conditions 93	
3.7 Product-of-sums Method 95	
3.8 Product-of-sums Simplification 98	
3.9 Simplification by Quine-McClusky Method 102	

	Contents
	\
3.10	Hazards and Hazard Covers 104
3/11	HDL Implementation Models 108
	Problem Solving with Multiple Methods 110
	Summary 111
	Glossary 112
	Problems 112
4 Doto	Laboratory Experiment 116 -Processing Circuits
	•
	Multiplexers 118
	Demultiplexers 127 1-of-16 Decoder 130
	BCD-to-decimal Decoders 133
	Seven-segment Decoders 136
	Encoders 138
	Exclusive-OR Gates 141
	Parity Generators and Checkers 143
	Magnitude Comparato, 146
	Read-only Memory 148
	Programmable Array Logic 154
	Programmable Logic Arrays 156
	Troubleshooting with a Logic Probe 158

7,17	
	Problem Solving with Multiple Methods 161 Summary 163
	Glossary 163
	Problems 164
	Laboratory Experiment 169
5. Num	ber Systems and Codes
	Binary Number System 171
5.2	Binary-to-decimal Conversion 173
5.3	Decimal-to-binary Conversion 176
5.4	Octal Numbers 179
5.5	Hexadecimal Numbers 183
5.6	The ASCII Code 190
5.7	The Excess-3 Code 192
5.8	The Gray Code 193
5.9	Troubleshooting with a Logic Pulser 194
5.10	Error Detection and Correction 196
	Problem Solving with Multiple Methods 198
	Summary 199
	Glossary 200
	Problems 200

Laboratory Experiment 205

6.	Arith	metic Circuits		206
	6.1	Binary Addition 207		
	6.2	Binary Subtraction 211		
	6.3	Unsigned Binary Numbers 212		
	6.4	Sign-magnitude Numbers 214		
	6.5	2's Complement Representation 216		
	6.6	2's Complement Arithmetic 220		
	6.7	Arithmetic Building Blocks 226		
	6.8	The Adder-subtracter 228		
	6.9	Fast Adder 232		
	6.10	Arithmetic Logic Unit 235		
	6.11	Binary Multiplication and Division 237		
	6.12	Arithmetic Circuits Using HDL 237		
		Problem Solving with Multiple Methods	239	
		Summary 240		
		Glossary 241		
		Problems 241		
_		Laboratory Experiment 243		244
7.		s and Timing Circuits		244
		Clock Waveforms 244		
		TTL Clock 249		
		Schmitt Trigger 250		
		555 Timer—Astable 253		
		555 Timer—Monostable 256		
		Monostables with Input Logic 258		
	7.7	Pulse-forming Circuits 262		
		Problem Solving with Multiple Methods	264	
		Summary 265		
		Glossary 266		
		Problems 266 Laboratory Experiment 268		
Q	Flip-l			270
υ.		RS FLIP-FLOPs 271		
		Gated FLIP-FLOPs 276		
		Edge-triggered RS FLIP-FLOPs 279		
		Edge-triggered D FLIP-FLOPs 281		
		Edge-triggered JK FLIP-FLOPs 283		
		FLIP-FLOP Timing 285		
		Edge Triggering through Input Lock Out	286	
		/K Master-slave FLIP-FLOPs 288		
		Switch Contact Bounce Circuits 289		
		Various Representations of FLIP-FLOPs	290	
		Analysis of Sequential Circuits 293		
		1		

	8.12	Conversion of FLIP-FLOPs: A Synthesis Example 296	
	8.13	HDL Implementation of FLIP-FLOP 298	
		Problem Solving with Multiple Methods 301	
		Summary 303	
		Glossary 303	
		Problems 304	
		Laboratory Experiment 306	
9,	Regis	sters	308
	9.1	Types of Registers 309	
	9.2	Serial In–serial Out 310	
	9.3	Serial In–parallel Out 313	
	9.4	Parallel In-serial Out 316	
	9.5	Parallel In–parallel Out 320	
		Universal Shift Register 324	
		Applications of Shift Registers 325	
		Register Implementation in HDL 333	
		Problem Solving with Multiple Methods 334	
		Summary 335	
		Glossary 336	
		Problems 336	
		Laboratory Experiment 339	
10.	Coun	ters	341
	10.1	Asynchronous Counters 342	
	10.2	Decoding Gates 346	
		Synchronous Counters 349	
		Changing the Counter Modulus 357	
	10.5	Decade Counters 363	
	10.6	Presettable Counters 368	
	10.7	Counter Design as a Synthesis Problem 376	
		A Digital Clock 381	
	10.9	Counter Design using HDL 384	
		Problem Solving with Multiple Methods 386	
		Summary 387	
		Glossary 388	
		Problems 388	
		Laboratory Experiment 390	
11.	Design	n of Synchronous and Asynchronous Sequential Circuits	392
	PART	A: Design of Synchronous Sequential Circuit 393	
		Model Selection 393	
	11.2	State Transition Diagram 394	
		State Synthesis Table 396	
		Design Equations and Circuit Diagram 398	
		Implementation using Read Only Memory 400	

			_
		Algorithmic State Machine 404	٠
		State Reduction Technique 409	
		F B : Asynchronous Sequential Circuit 413	
		Analysis of Asynchronous Sequential Circuit 414	
		Problems with Asynchronous Sequential Circuits 417	
		Design of Asynchronous Sequential Circuit 419	
	11.11	FSM Implementation in HDL 423	
		Problem Solving with Multiple Methods 425	
		Summary 432	
		Glossary 432 Problems 433	
		Laboratory Experiment 435	
12	D/A (Coversion and A/D Conversion	438
12.		Variable, Resistor Networks 439	436
		Binary Ladders 442	
		D/A Converters 447	
		D/A Accuracy and Resolution 454	
		A/D Converter—Simultaneous Conversion 455	
		A/D Converter—Counter Method 458	
		Continuous A/D Conversion 461	
		A/D Techniques 464	
		Dual-slope A/D Conversion 467	
		A/D Accuracy and Resolution 471	
		Summary 472	
		Glossary 473	
		Problems 473	
13.	Mem	ory	476
	13.1	Basic Terms and Ideas 477	
	13.2	Magnetic Memory 479	
	13.3	Optical Memory 483	
	13.4	Memory Addressing 486	
		ROMs, PROMs, and EPROMs 491	
		RAMs 496	
		Sequential Programmable Logic Devices 503	
	13.8	Content Addressable Memory 506	
		Summary 507	
		Glossary 508	
1.4	Th: "	Problems 509	
14.	_	al Integrated Circuits	512
		Switching Circuits 513	
		7400 TTL 518 TTL Proposition 520	
	14.5	TTL Parameters 520	

Λ.	_1_	1	
	nto		

14.4 TTL Overview 528

14.5 Open-collector Gates 530	
14.6 Three-state TTL Devices 532	
14.7 External Drive for TTL Loads 534	
14.8 TTL Driving External Loads 537	
14.9 74C00 CMOS 538	
14.10 CMOS Characteristics 541	
14.11 TTL-to-CMOS Interface 544	
14.12 CMOS-to-TTL Interface 546	
14.13 Current Tracers 548	
Summary 550	
Glossary 551	
Problems 552	***
15. Applications	558
15.1 Multiplexing Displays 559	
15.2 Frequency Counters 565	
15.3 Time Measurement 570	
15.4 Using the ADC0804 571 15.5 Microprocessor-compatible A/D Converters 577	
15.5 Microprocessor-compatible A/D Converters 577 15.6 Digital Voltmeters 585	
Summary 591	
Problems 591	
16. A Simple Computer Design	593
16.1 Building Blocks 594	272
16.2 Register Transfer Language 597	
16.3 Execution of Instructions, Macro and Micro Operations 599	
16.4 Design of Control Unit 602	
16.5 Programming Computer 605	
Summary 612	
Glossary 612	
Problems 613	
Appendix 1: Binary-Hexadecimal-Decimal Equivalents 615	
Appendix 2: 2's Complement Representation 621	
Appendix 3: TTL Devices 625	
Appendix 4: CMOS Devices 628	
Appendix 5: Codes 630	
Appendix 6: BCD Codes 633	
Appendix 7: Overview of IEEE Std. 91-1984, Explanation of Logic Symbols	638
Appendix 8: Pinout Diagrams 643	
Appendix 9: Answers to Selected Odd-Numbered Problems 647	
Index	672
	J. 2

Preface to the Seventh Edition (SIE)

The seventh edition of Digital Principles and Applications continues with the upgradation of the work started in its previous edition. The job was to build upon the strengths of one of the best introductory and authentic texts in the field of Digital Electronics—its lucid language, down-to-earth approach, detailed analysis and ready-to-use information for laboratory practices. The sixth edition sought improvement primarily by (i) strengthening the design or synthesis aspect that included advanced material, such as a simple computer design, and (ii) incorporating many new topics like Hardware Description Language, Asynchronous Sequential Circuit, Algorithm State Machine chart, Quine-McClusky algorithm, Look Ahead Carry Adder, etc.

The tremendous response to the improvements made in the sixth edition from the academic community prompted us to work on their suggestions and come out with this seventh edition.

NEW TO THIS EDITION

The seventh edition has been revised extensively and restructured to emphasize new and important concepts in Digital Principles and Applications. This edition increases the depth and breadth of the title by incorporating latest information on existing topics like Boolean Algebra, Schmitt Trigger, 555 Timer, Edge Triggering, Memory Cell, Computer Architecture, and also introduces new topics like Noise Margin, Error Detection and Correction, Universal Shift Register and Content Addressable Memory.

The most notable change in this edition is the inclusion of two completely new features—problem solving by multiple methods and laboratory experiments—that will enable the student community develop deeper understanding of the application side of digital principles. Problem solving by multiple methods help students in understanding and appreciating different alternatives to reach a solution, without feeling stuck at any point of time. Laboratory experiments facilitate experimentation with different analysis and synthesis problems using digital integrated circuits (IC). Each experiment describes its aim, a short reference to theory, apparatus required and different work elements.

THE BASIC FEATURES

The new edition retains its appeal as a complete self-study guide for a first-level course on Digital Logic and Digital Circuits. It will serve the purpose of a textbook for undergraduate students of CSE, ECE, EEE, Electronics and Instrumentation and IT. It will also be a valuable reference for students of MCA, BCA, DOEACC 'A' Level, as well as BSc/MSc (Computer Science/IT).

The key features are:

- > Presence of various applications and lab experiments considering the common digital circuit design employed in industries (e.g., LCD display and ADC0804 operation).
- ➤ In-depth coverage of important topics like clock and timing circuits, D/A-A/D conversion, register, counters and memory.
- > Tutorial-based approach with section-end self test questions and problem solving through various methods.
- Useful discussion on TTL and CMOS devices and pin diagrams
- > Rich Pedagogy
 - 180 Solved Examples
 - · 290 Section-end Problems
 - 500 Chapter-end Problems

COMPREHENSIVE WEBSITE

An important addition to this title is the accompanying website—http://www.mhhe.com/leach/dpa7, designed to be an exhaustive Online Learning Centre (OLC). This website contains the following:

For Students

- · Downloadable codes for HDL examples in the book
- Supplementary Reading material

Besides Quine-McClusky code and HDL examples, additional information and discussion on various supplementary materials like five-variable Karnaugh Map and Petrick's Algorithm will be available here. Regular updates on different topics of Digital Electronics will be posted to keep the reader informed about recent changes in this field.

For Instructors

Instructors who have adopted this textbook can access a password-protected section that offers the following resources.

- · Solution manual
- · Chapterwise PowerPoint slides with diagrams and notes

ACKNOWLEDGEMENTS

I would like to acknowledge the inspiration and support I received from Prof. B N Chatterji (Retd.), Prof. R N Pal (Retd.), Prof. R V Rajakumar, Prof. A Chakraborty, Prof. P P Chakraborty, Prof. D Datta, Prof. S Bannerjee, Prof. P K Biswas, Prof. S S Pathak, Prof. S Mukhopadhyaya, Prof. A S Dhar, Prof. I Chakraborty, Prof. P Mandal, Prof. S Mahapatra, Prof. T K Bhattacharya, and all my faculty colleagues at Indian Institute of Technology (IIT) Kharagapur, especially, from the Department of Electronics and Electrical Communication Engineering and G S Sanyal School of Telecommunications. But for the paucity of space, I would have named many others.

Thanks are due to my research students—Mr S Ari, Mr Md Sahidullah, Mr Israj Ali, and Mr A Mandal for their contribution at different stages of development of the edition. I acknowledge the benefit derived from my interaction with different batches of students while teaching the Digital Electronics subject—three years at Institute of Engineering and Management, Kolkata and over six years at IIT Kharagpur.

I am grateful to the esteemed reviewers for their encouraging comments and valuable suggestions for this edition.

Sunil Mathur

Maharaja Agrasen Institute of Technology, New Delhi

V Kumar

Maharaja Surajmal Institute of Technology, New Delhi

Bijoy Bandopadhyay

University College of Science & Technology, Kolkata

Anita Kanavalli

MS Ramaiah Institute of Technology, Bangalore

I also thank the entire team of Tata McGraw Hill Education, more specifically Vibha Mahajan, Shalini Jha, Ashes Saha, Surbhi Suman, Anjali Razdan and Baldev Raj for their support.

At this point, I humbly remember all my teachers and my father (late) G N Saha who provided me a great learning environment. I also fondly recollect the contributions in my upbringing of Kharagpur Vivekananda Yuva Mahamandal, Vivekananda Study Circle, IIT Kharagpur Campus and Ramakrishna Mission. I must mention the support I always received from my family—my mother, my parents-in-law, my sisters (specially Chhordi), Chhoto Jamaibabu, and last but not the least, my wife, Sanghita, and daughter, Upasana. The effort behind this work was mine but the time was all theirs.

GOUTAM SAHA

Feedback

Due care has been taken to avoid any mistake in the print edition as well as in the OLC. However, any note on oversight as well as suggestions for further improvement sent at tmh.csefeedback@gmail.com will be gratefully acknowledged (kindly mention the title and author name in the subject line). Also, please report to us any piracy of the book spotted by you.

Preface

PURPOSE

The fifth edition of Digital Principles and Applications is completely recorgnized. It is written for the individual who wishes to learn the principles of digital circuits and then apply them to useful, meaningful design. Thus the title. The material in this book is appropriate for an introductory course in digital logic in either a computer or an electronics program. It is also appropriate for "self-study" and as a "reference" for individuals working in the field. Emphasis is given to the two most popular digital circuit (IC) families—transistor-transistor logic (TTL) and complementary metal oxide silicon (CMOS) logic. Many of these individual ICs are discussed in detail, and pinouts for more than 60 digital IC chips are summarized in Appendix 8. Standard logic symbols are used along with the new IEEE standard logic. A review of the new IEEE symbols is given in the appendix.

BACKGROUND

It is not necessary to have a background in electronics to study this text. A familiarity with Ohm's law and voltage and current in simple dc resistive circuits is helpful but not required. If you have no desire to learn about electronics, you can skip Chap. 13. To the extent possible, the remaining chapters are written to be independent of this material. If you have not studied electronics, Chap. 13 will provided the necessary background for you to converse successfully with those who have. Study it any time after Chap. 1. For "old-times" who have studied electronics, Chap. 13 will provide a good review and perhaps a new and valuable point of view. In any case, the material in Chap. 13 will certainly enhance both the knowledge and ability of anyone!

ORGANIZATION

Each chapter begins with a contents that lists the subjects in each section. The contents listing is followed by a list of chapter objectives. At the end of each chapter section are review questions, called self-tests, which are intended to be a self-check of key ideas and concepts. At the end of each chapter, answers are supplied for the self-tests. A summary and a glossary are provided at the end of each chapter. In any subject area, there are many terms and concepts to be learned. The summary and glossary will provide you with the opportunity to be sure that you understand the *exact* meaning of these terms, phrases, and abbreviations, The end-of-chapter problems are arranged according to chapter sections. The problems reinforce ideas and concepts presented and allow you to apply them on your own. Solu-

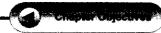
tions to selected odd-numbered problems are given at the end of the book. In addition, the appendix contains reference material that will be useful from time to time.

LABORATORY EXPERIMENTS

A complete set of experiments keyed to this text is available in a laboratory manual, Experiments for Digital Principles.

DONALD P. LEACH ALBERT PAUL MALVINO

Visual Walkthrough

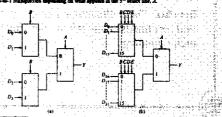

OBJECTIVES

- state reduction techniques
 Analysis of asynchronous sequential circuit
 Problems specific to asynchronous sequential circuit
 Design issues related to asynchronous sequential circuit

Design problem normally starts with a word description of input output relation and ends with a circuit diagram having sequential and combinatorial logic elements. The word description is first converted to a state transition diagram or Algorithmic State Machine (ASM) chart followed by preparation of state synthesis table. For filip-flop based implementation, excitation tables are used to generate design equations through Karnaugh Map. The final circuit diagram is developed from these design equations. In Read Only Memory (ROM) based implementation, excitation tables are not required nowever, flip-flops are used as delay elements. In this chapter, we show how these techniques can be used in sequential curcuit design.

There are two different approaches of state machine design called Moore model and Mealy model. In Moore model circuit diviny outputs or generated soilely from secondary outputs or memory values. In Mealy model circuit inputs, also known as primary inputs combine with memory elements to generate circuit output. Both the methods are discussed in detail in this chapter.

In general, sequential logic circuit design refers to synchronous clock-triggered circuit because of its design and implementation advantages. But there is increasing attention to asynchronous sequential logic


Every chapter opens with a set of chapter ob-

Benefits: These provide a quick look into the concepts that will be discussed in the chapter.

Every chapter contains several worked out examples totalling to 180 in the book.

Benefits: These will guide the students while understanding the concepts and working out the exercise problems.

4.14 HOL SMPLEMENTATION OF DATA PROCESSING CIRCUITS

This statement does following assignment. If, S=1, X=A and if S=0, X=B. One can use this state or the logic equation to realize a 2 to 1 multiplexer shown in Fig. 4.2(a) in one of the following ways.

module mux2tal(A,D0,D1,Y1) module mux2tal(A,D0,D1,Y1)
input A,D0,D1 '* Circuit shown in Fig. 4-3(a) "/ circuit shown in Fig. 4-3(a) "/ output Y;
evaluation Y-(-A5D0)][X6D1];
evaluation Y-(-A5D0)][X6D1];
exaction and module discovered in Fig. 4-3 D1 : D0; /*Conditional existingment*/

The behavioral model can be used to describe the 2 to 1 multiplexers in following two different ways, one using it ... else statement and the other using case statement. The case evaluates an expression or a variable that can have multiple values each one corresponding to one statement in the following block. Depending on value of the expression, one of those statements get executed. The behavioral model of 2 to 1 multiplexer in both is given below:

make the number of the number

New to this edition, HDL, an interesting development in the field of hardware design, has been introduced.

Benefits: The relevant HDL description and codes are weaved into chapters to help students implement and design digital circuits.

Programming a PAL

A PAL is different from a PROM because it has a programmable AND array and a fixed OR array. For instance, Fig. 4.43 shows a PAL with 4 inputs and 4 outputs. The x's on the input side are fixed locks, while the solid black bullets on the output side are fixed connections. With a PROM programmer, we can burn in the desired fundamental products, which are then ORed by the fixed output connections.

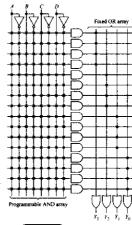


Fig. 4.43 Structure of PAL

Figures are used exhaustively in the text.

Benefits: These illustrate the concepts and methods described for better understanding.

(PASELE-TEST)

- Analog signals are (continuous, discrete).

- Analog signals are (continuous, discrete).
 The operation of a digited circuit is generally considered to be nonlinear. (T or F)
 Write the beauty number for the docimal number 7.
 Ac a tain digital circuit is designed to operate with voltage levels of -0.2 Vdc and -3.0 Vdc. if H = 1 = -0.2 Vdc and L = 0 = -3.0 Vdc, is the positive logic or negative logic?
 Refer to Fig. 1.4c and describe the mesaging of the terms V_{cottage} and V_{cottage}.
 Can V_c over have a value within the forbidder band in Fig. 1.4c? Explain.
 In Fig. 1.8c, H = +5.0 Vdc and L = +1.0 Vdc. What are the voltage levels between which the rise and fall times are measured?
- In Fig. 1.5a, H = +5.0 Vdc and L = +1.0 Vdc. What are the voltage levele between which the rise and full times are measured?
 What is the value of Dux yoch M if the waveform in Fig. 1.6b is high for 2 ms and low for 5 ms?
 Refer only to the visue of Low your penhod in Fig. 1.9c und determine the State of V if both G and V are low. Chack your response with the sent bable in Fig. 1.15c. Repeat if both G and V are high.
 Refer only to the inverting vistate buffer symbol in Fig. 1.11c and determine the state of V if both G and V are high.
 Refer only to the inverting vistate buffer symbol in Fig. 1.11c and determine the state of V if both G and V are high.
 Por the AND gate in Fig. 1.13c, V = M and V = L. What is the state of V: 1.11c. Repost if both G and be are the value of V in the state of V if the North Y in the state of V: 1.11c. The dist is the state of V: 1.11c. The dist is the value of the value of V: 1.11c. The dist is the value of the value of V: 1.11c. The dist is the value of the value of V: 1.11c. The dist is the value of V: 1.11c. The dist is V in the value of V: 1.11c. The dist is V in the value of V: 1.11c. The dist is V in the value of V: 1.11c. The value of

A section called Self-Test appears after every section in every chapter.

Benefits: This will help students check their understanding of the concepts discussed in a section before moving on to the next section. Answers to Self-Tests are given at the end of that chapter.

A Brief summary is provided at the end of the chapters.

Benefits: Summary gives the essence of each chapter in brief and will be helpful for a quick review during the examinations.

SUMMARY

2.43 shows there are of equivalent game. Changing from one to the other is accomplic disking bubbles, and changing AND is OR or OR to AND. Duringthe gate land NAN to Bustnets De Mongain's Birst and swoods Reprinters.

Glossary

A glossary containing the important definitions and abbreviations is listed at the end of each chapter.

Benefits: It helps in memorising the important terms discussed in the chapter.

GLOSSARY

- ALU Arithmetic logic unit.

 **anday signal A signal whose amplitude can take any value between given limits. A continuous signal.

 **binsay namabar A number code that uses only the digits 0 and 1 to represent quantities.

 **binsay have A number code that uses only the digits 0 and 1 to represent quantities.

 **binsay have a number code that uses only the digits 0 and 1 to represent quantities.

 **binsay have two types of charge carriers; a bipolat transition is any not put.

 binsay digit.

 binsay digit.

 **biffer A digital circuit capable of maintaining a required logic level white acting as a current source or a current sink for a given load.

 **chip A small pince of semiconductor on which an IC is formed.

 **CMOS Complementary metal-oxide stilicon.

 An IC using both n-channel and p-channel field-effect transitions (FETS).

 CPU Central processing unit.

 CPT Cathod-ray tube.

 clack A periodic, roctangular waveform used as a basic timing signal.

 **consuper a dispital circuit distigned to keep track of (to count) a number of events.

 **consuper a digital circuit distigned to change a digital number into another form.

 demandisplexer (DEMUX) A digital circuit that will select only one of many invots.

- digital signal A signal whose amplitude can have only given discrete values between defined limits A signal that changes amplitude in discrete steps.
 DIP Dual-indee package.
 DIP Dual-indee package.
 DIM Direct memory access.
 DIM Direct memory access.
 DIM procke for a periodic digital signal, the ratio of high level time to the period or the ratio of low level time to the period.
 ECL Emitter-coupled logic.
 encoder A unit designed to change a given signal into a digital jumber?
 Alp-phop An electronic circuit that can store one bit of a binary number.
 Jepsy dark A magnetically coated disk used to store digital data.
 giver A digital circuit having two or more

- store digital data.
 gent A digital circuit having two or more
 imputs and a single output.

 **Anadomating A "request" to transfer data
 into or out of a computer, followed by an
 "acknowledge" signal, allowing data transfer
 to begin.
- "acknowledge" signal, allowing data transfer to begin.

 *** If Clitegrated circuit.

 *** If Clitegrated A digital circuit, a twitching circuit, or any kind of two-state circuit that duplicates mental processes.

 *** LST Large-scale integration.

 *** amoney** The area of a digital computer used in store moreans and disa.

PROBLEMS

- 8.1 List as many bistable devices as you can think of—either electrical or mechanical. (Hint: Magnets, lamps, relays, etc.)
 8.2 Rechaw the NOR-gast fip-flop in Fig. 8.3b and label the logic level on each pas for R = S = 0. Repeat for R = S = 1, for R = G and S = 1, and G = R = 1 and S = 0.
- and tabel the NAND-gate flip-flop in Fig. 8.7a and tabel the logic level on each pin for $\overline{R} = \overline{S} = 0$. Repeat for $\overline{R} = \overline{S} = 1$, for $\overline{R} = 1$, and $\overline{S} = 0$, and for $\overline{R} = 0$ and $\overline{S} = 1$.
- 8.4 Redraw the NAND-gate flip-flop in Fig. 8.8 and label the logic level on each pin for R = S = 0. Repeat for R = S = 1, for R = 0 and S = 1, and for R = 1 and S = 0.

Section 8.7

- 8.5 The waveforms in Fig. 8.50 drive the clocked RS flip-flop in Fig. 8.11. The clock signal goes from low to high at points A, C, E, and G. If Q is low before point A in time:

 a. At what point does Q become a 1?
 b. When does Q reset to 0?

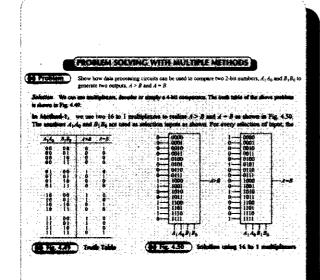
64 Fg. 3.50

- 8.6 Use the information in the preceding problem and draw the waveform at Q.
 8.7 Prove that the flip-flop realizations in Fig. 8.12 are equivalent by writing the logic level

8.8 The waveforms in Fig. 8.51 drive a D latch as shown in Fig. 8.15. What is the value of D stored in the flip-flop after the clock pulse is

- What is the advantage offered by an edge-triggered RS filp-floop over a clocked or gated RS filp-floop. The vertex of the the typical operation of an edge-triggered RS filp-floop. This circuit was connected in the laboratory, but the R and S inputs were mistalenly reversed. Draw the resulting waveform for Q.

 An edge-triggered RS filp-floo will be used to produce the waveform Q with respect to the clock as shown in Fig. 8.52a. First, would you use a positive-edge- or a negative-edge-triggered filp-floop? Why? Draw the waveforms necessary at R and S to produce Q.



The text contains more than 250 section-end practice problems.

Benefits: These will help the students in improving their problem-solving skills.

Multiple Methods

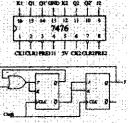
Each chapter contains numerous problems solved using multiple methods.

Benefits: Problem solving by multiple methods helps students in understanding and appreciating different alternatives to reach a solution, without feeling stuck at any point of time.

abassian Exterimente

Each chapter contains a lab experiment.

Benefits: Laboratory experiments facilitate experimentation with different analysis and synthesis problems using digital integrated circuits (IC). These give a hands-on experience to the reader.


LABORATORY EXPERIMENT

Able: The size of this superiment is to study D fip-flop and JK flip-flop and no them for

Theory: The truth ublic of D Rip-Bop an IK flip-flow are as follows.

Their characteristic equations is

IK Shy Stop: Q ... - JQ + K'Q.

Apparatus: 5 VDC Power supply, Multiposter, Bread Boerd, Clock Generator, and Oscilissospe:

Work element: 1C 7474 is a deal, edgeclacked, D flip-flop with both PRESET and CLEAR, input while 7476 is a deal, edgeclacked, M flip-flop data too, has both PRE-SET and CLEAR legat. Verify the resh table of the 1474 and 1475. When it is in making

